本文共 1079 字,大约阅读时间需要 3 分钟。
近日,Facebook AI 团队发布了一项颠覆性技术:通过 Facebook APP 的用户可以将单摄像头拍摄的 2D 照片转化为 3D 照片。这项服务目前已支持 iPhone 7 及以上版本的苹果手机以及大多数中高端安卓手机。
3D 拍摄技术一直是手机摄像头发展的重要方向。虽然双目摄像头是主流方案,但学术界长期致力于研究如何仅利用单摄像头的 2D RGB 照片生成 3D 照片。这种技术不仅降低了硬件成本,还让我们得以观察经典照片的 3D 化效果。
Facebook 的实现方案主要包括以下几个关键技术:
Facebook 选择使用 U-Net 结构来实现 2D 照片到 3D 照片的转化。该架构通过 skip 连接方式部署 FBNet 模块。U-Net 编码器和解码器均包含五个阶段,每个阶段对应不同的空间分辨率。
FBNet 模块是 U-Net 的核心组件,包含以下功能:
为了实现高精度和计算效率的平衡,Facebook 团队采用了神经架构搜索方法 ChamNet 来优化网络结构。其搜索空间包含 3.4 x 10^22 种架构,耗时 3 天完成搜索,使用了 800 块 Tesla V100 GPU。
为了进一步降低模型大小并提升计算速度,Facebook 采用了以下技术:
通过将模型转化为 Int8 精度,显著降低了计算需求。该技术利用 PyTorch 生态的 QNNPack 和 QAT 方法,实现了训练阶段与产品部署阶段的性能差距缩小。
PyTorch 的 QNNPACK 和 QAT 方法为量化训练提供了开源支持,帮助开发者快速实现高效的模型推理。
Facebook 在训练阶段使用了百万级成对的 3D 照片和深度图,这是实现高精度效果的基础保障。
Facebook 的这项技术不仅展现了 3D 照片转化的潜力,更体现了其在算法研究和工程实现方面的实力。尤其值得一提的是,团队将核心技术开源,为个人开发者和创业团队提供了宝贵的机会。
如果你对三维视觉技术和重建领域感兴趣,可以关注我们的交流群,获取最新动态。
原文地址:Facebook AI Research
转载地址:http://chbsz.baihongyu.com/